
NASA Contractor Report 3364

A Computer Program for the
Generation of Logic Networks
From Task Chart Data

Henry E. Herbert

CONTRACT NASl-16078
DECEMBER 1980

MSA

NASA
CR
3364
c. 1

TECH LIBRARY KAFB, NM

NASA Contractor Repoit 3364

A Computer Program for the
Generation of Logic Networks
From Task Chart Data

Henry E. Herbert
Computer Sciences Corporrltioir
Hm~zpton, Virghriu

Prepared for
Langley Research Center
under Contract NASl-16078

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1980

TABLE OF CONTENTS

Page

Section 1 - INTRODUCTION . 1

Section 2 - NETWORK CONSTRUCTION................... 3

Section 3 - RUNNING THE NETGEN PROGRAM............. 11

Section 4 - PROGRAM DESCRIPTION . 21

iii

LIST OF ILLUSTRATIONS

Page

Figure 1 SAMPLE "A" CARDS . 12

Figure 2 SAMPLE "B" CARDS . 13

Figure 3 OUTPUT LISTING - ORIGINAL INPUT DATA... 15

Figure 4 OUTPUT LISTING - SUMMARY INFORMATION... 16

Figure 5 OUTPUT LISTING - FINAL NETWORK REPORT.. 17

Figure 6 NETGEN TREE DIAGRAM.................... 22

APPENDIX . 33

iv

I

Section 1
INTRODUCTION

The PPARS NETWORK GENERATION PROGRAM (NETGEN) is a batch program that will
provide the user with a logic network based on his input of work tasks in task
list or Work Breakdown Structure (WBS) format and the relationships among the
work tasks.

Past schedule analysis using the Critical Path Method (CPM) has required the
schedule analyst to manually convert work tasks into a CPM-type logic network.
This conversion required the re-labeling of the work tasks as activities with
predecessors and successors, linking them together with interface constraints
(activities). calculating all the work task and interface activity durations,
and manually drawing up a network to check for logic errors. At this point,
the schedular coded up the data on keypunch forms and subsequently ran the
data through the PPARS Batch/EZPERT programs to validate the new network by
auditing it against the manually drawn logic diagrams before doing any
updates.

The NETGEN program was designed to create for the analyst as much of a logic
network that could be programmed. Applications of NETGEN include assistance
in building new networks and providing practical and creditable CPM analysis
of work task or WBS format schedules.

The functions of the NETGEN program are as follows:

- scan the work task information

- create a predecessor and successor for each work task

- create the interface activities needed to tie the network together

- calculate all activity durations not provided by the user

- determine all start and end events

- create the control cards and data file needed to-produce an EZPERT PRENET
mode network plot

- prepare a file from the input data that can be input to PPARS Batch.
This file is a standard logic/CPM network that can be saved and later
updated by cards or by the interactive program, IAPERT.

The input consists of the basic PPARS control cards (*TITLE. *DATE, *REPORT,
etc.), NETGEN activity cards, and EZPERT control cards for the PRENET(LOGIC)
mode.

The output consists of various messages and lists produced by NETGEN as
follows:

- printout of the original input data (NETGEN)

- diagnostic messages (NETGEN)

- list of interface activities as created by NETGEN

- list of start and end events as determined by NETGEN

- list of the final network in standard logic format

Use of trade names or names of manufacturers in this report does not
constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

2

Section 2
NETWORK CONSTRUCTION

On the NASA/LaRC PPARS system, a logic network is defined to be a series of
activities preceded and succeeded by event nodes. NETGEN is designed to
convert task data from a barchart format into a logic network, thereby
relieving the schedular of the manual chores of path construction, node
labeling, calculation of time durations, and the subsequent coding of this
information on the NASA Fqrm 577. In order to build a network from the task
data, NETGEN must know what the task numbers are and how the tasks are
related. There are five types of task relationships used in NETGEN, and they
are as follows:

1. E/E (End to End)

2. E/S (End to Start)

3. S/S (Start to Start)

4. S/E (Start to End)

5. F/A (Immediate Following Activity)

These five types specify how the activities are related, or how the event
nodes are to be connected.

As an example, assume we have two tasks, X and Y, with WBS numbers 10.1 and
12.1, respectively. In task chart format, they would be represented as:

.

. X 10.1 .

.

.

. Y 12.1 .

.

Both tasks would have a start/end date, a description and (optionally)
resource. For the first example, assume that these are related (to be joined)

3

End to End; i.e., task X must end before task Y can end. The type of
relationship is an E/E, and NETGEN will create the following network:

.

: 1010
. x. .
.-------. 1015 .++++++

. . . . +

. +
+
+

.
Y

: 1210 :-------: 1215 :
. . . .
.

consisting of the three PERT type activities:

PREDECESSOR SUCCESSOR DESCRIPTION

1010 1015 X
1015 1215 E/E CONSTRAINT
1210 1215 Y

Note the numbering sequence of the activities here; NETGEN uses the original
task number in deriving the predecessor and successor numbers for the new
activities. Specifically, the predecessor is equal to the original task
number (without the periods) multiplied by ten, i.e. , 101 * 10 = 1010. To
form the successor value, NETGEN merely adds a five to the predecesssor, or
1010 + 5 = 1015 (the new successor number).

As a second example, assume that task X and Y are joined Start to Start;
i.e, Task X must start before Task Y can start. The interface type is S/S and
NETGEN creates the following network:

. :..
X

: 1010 : -------: 1015 :
. . . .
.

+
+
+
+
+
++++++

. . Y. .

. 1210 .-------. 1215 .

. . . .

.

consisting of three activities:

PREDECESSOR SUCCESSOR DESCRIPTION

1010 1015 X
1010 1210 S/S CONSTRAINT
1210 1215 Y

Lastly, if two activities are to be joined End to Start (E/S) or Start to
End (S/E), NETGEN operates as follows:

E/S (End to Start)

.
. x. .

: 1010 .-------. 1015 .+++++
. . . . +
. +

+
+
+
+ . . Y. .
++++ . 1210 .-------. 1215 .

.

5

PREDECESSOR SUCCESSOR

1010
1015
1210

1015 X
1210 E/S CONSTRAINT
1215 Y

- OR -

DESCRIPTION

S/E (Start to End)

.
.I

: 1010 :-----------“----------: 1015 :
. . +++++ . .
. +

+
++++++++++++++++++++++

+
.
. . Y .
. 1210 *----------------* ’ 1215 .
. . . .
.

PREDECESSOR SLI-CCESSOR DESCRIPTION

1010 1015 X
1010 1215 S/E CONSTRAINT
1210 1215 Y

The important feature to note here is that these four types of relationships
imply the existence of an "interface" activity between the two original tasks.
This interface activity, as created by NETGEN, will have a description very
similar to those given in the examples, as well as a start and end date. As
with all activities, NETGEN will calculate the duration of this interface
activity. If this duration is negative, NETGEN will print an error message to
the user, and reset the duration to 0.

6

The fifth type of relationship, Immediate Following Activity, (F/A),works
differently in that no interface activity is created. The F/A implies that a -- --
given task is immediately followed by the next task with no spare time between --- ------
them. On F/A tasks, successor and predecessor nodes are mesiza single
event. For example, use tasks X and Y again and let the relationship between
them be such that Y immediately follows X. NETGEN would first create the
activities:

.

. . X . . . Y .

. 1010 .---- -------* * 1015 . . 1210 ’ 1215 . .-----------.

.

.

Then, NETGEN would merge event nodes 1015 and 1210 to form the activities:

. X Y

. 1010 .---------. 1015 .---------. 1215 .

.

PREDECESSOR SUCCESSOR DESCRIPTION -- _-

1010 1015 X
1015 1215 Y

In other words, the successor of the leading activity replaces the
predecessor of the following activity. For any subsequent tasks that
interfaced to the original predecessor event of Y, i.e., 1210, NETGEN
automatically reassigns them to the new predecessor event, 1015.

In the case of multiple F/A type activities following an activity, NETGEN
replaces all their predecessors with the successor of the activity that they
follow; i.e., assume activities X, Y, Z are all F/A Type to activity D. Let
the task numbers for this example be as follows:

7

Task Description

10.0 D
11.0 X
12.0 Y
13.0 Z

NETGEN would first create the activities:

PREDECESSORS SUCCESSOR DESCRIPTION

1000 1005 D
1100 1105 X
1200 1205 Y
1300 1305 Z

Then, NETGEN would merge the predecessors of X, Y, Z with the successor of D
to form:

.

. . D . . Y

. 1010 .--------------. 1005 .______________--. 1205 .

.

.
+
+ Z
+-------------e-e--. 1305 .

.

Any other activity that referenced the predecessor node to either X, Y, or Z
would be tied to the successor node for D, 1005. Hence, the final network
would appear as:

PREDECESSOR SUCCESSOR DESCRIPTION

1000 1005 D
1005 1105 X
1005 1205 Y
1005 1305 Z

8

As a last example on the F/A type, assume that two different tasks are
immediately followed by the same single task. Let activity Z be a following
activity to both X and Y. Let the task numbers be:

TASK DESCRIPTION -

10.0 X
11.0 Y
12.0 Z

NETGEN would create the following path structure:

.
X Z.

: 1000 :----------: 1005 :--------- : 1205 :
.
.

+
+

. +

. . Y +

. 1100 .-------------------+

. .

.

In this case, NETGEN replaced the predecessor of Z with the successor of X, --
and then tied Y to that node. Because of the orderofosinal tasks,the-jl
FZ path wzsta?;rished first, thus preventing the node 1005 from being
overwritten by the successor to Y.

The order of tasks in NETGEN is very important. In all the examples given
here if task X is related to Y such that X goes first in time, then X is the
constraining task, and Y is the constrained task. In other words. X must
occur (start or end) before Y can occur (start to end), and X constrains the
action of Y; so on,the input deck to NETGEN, the task X information is placed
ahead of the task Y information. In general the first activity (on input) is
considered to be the Project (network) start. The format for coding this data
will be detailed in the next section.

Activity duration is considered to be the delta (time) between the start
date and the end date. NETGEN computes the duration from the dates supplied
on input for the activities. When computing the durations NETGEN uses the

9

appropriate date (start or end) from the preceding activity for the interface
start date
activity for Che

and the appropriate date (start or end) from the succeeding
.interface end date . The duration for these is then

calculated by subtracting thaw0 values. If NETGEN detects a. negative value
for any of the computed durations, it prints a warning message and resets the
value to zero.

10

Section 3
RUNNING THE NETGEN PROGRAM

INPUT DESCRIPTION

NETGEN interfaces with the PPARS Batch and EZPERT programs by producing
input files for them. NETGEN will accept any valid PPARS Batch control cards,
as well as the valid EZPERT PRENET (LOGIC) mode control cards. The input to
NETGEN consists of the control cards and the data cards. The control cards
are the standard PPARS Batch cards, while thed=ards contain such
information as the task number, start/end dates, duration, resources,
description, etc. The real difference between the data cards for PPARS Batch
and NETGEN is that NETGEN uses a two-card format, the "A1' and the rlBlr card.
The "Al card contains the information unique to a particular task, while the
"Bl' card contains the other task numbers and their type of relationship to the
given task. The layout of the rlAt' and rrBrl cards is shown in Figures 1 and 2.
The fields for these cards are as follows:

1

3-2
5-18

19-24
25-30
31-34
35-38
39-72

73
74-80

"A" Card --

A
Activity Code
Master Schedule
Task Number
Start Date
End Date
Duration
Resources
Description
EZPERT Milestone Indicator
Organization

ltBlt Card --

co1 Item

1 B
2 blank

3-16 Task # from the "A" card
17-18 Type of constraint 1
19-32 Constrained task 61
33-34 Type of constraint 112
35-48 Constrained task 12
49-50 Type of constraint
51-64 Constrained task W3
65-66 Type of constraint #4
67-80 Constrained task 84

11 of Cols ---

1
1
2

14
6
6
4
4

35
1
7

11 of Cols ---

1
1

14
2

14
2

14
2

14
2

14

11

LANGLEY RESEARCH CENTER
PPAIWNETGEN

'T'CARD CODING FORM

TASKNUMSER ACTlWTY DESCRIPTION

1

i

I

.-L

i

1

-t

NASA Langley (October 1979)

i

L 1 L

i
L

i
L.
L

L J L.

L.

‘I
L

I-

L

L

L

!-

JIIIII~I~~~~~~~~~~~IIIIIII~I~~~:~~~III’~~
PHSD-SW0 N-17

FIGURE 1

..lIdZ
I I I I I I I I I I Ilr ll

LullludId

1111111111111

i I I I I I i I I I !J$

I I I I I I I I I I lh,,

J-l-u-d

III

I I I I I I I I I I ILI.ij

1.lLLJLuLdI1.fi

II I I , ! , , , j

II.

Lu-LLul-l-u

-1111111111111.

mu

.-I

III I I I I I.

1111111111111

U-LULLLJ-I-L~.

III II ! I I I I I I I

.u-Ll-l-u .I-J-LLLl
II I III ! III III

PPARSlfWGEN
3” CARD COOING FORM 3” CARD COOING FORM

“A” CARD TASK “A” CARD TASK
NUMBER IDENTIFIER NUMBER IDENTIFIER NUMBER NUMBER

CONSTRAINED TASK CONSTRAINED TASK CONSTRAINED TASK CONSTRAINED TASK
N”MsER NUMBER NUMBER NUMBER

LANGLEY RESEARCH CENTER

PMSD-SAKO N-16

FIGURE 2

The presence of the trAt1 card number on the "Btl card is for sorting purposes
only, and allows the user to code up all the "At1 cards, and then all the **Bll
cards and let NETGEN do the subsequent data matching. Any "A" card can have a
maximum of five (5) rlBr1 cards associated with it, and since there can be four
(4) constrained tasks per llB1l cards, this provides the user with up to 20
constrained tasks. If any activity is the ending (last) task of a project, it
won't have any constrained tasks, and won't require any subsequent rlBll cards.

NETGEN is programmed to compute activity durations based on a five-(default)
or seven-day workweek. These are specified by the *5DAY or *7DAY cards in the
input. Most task charts show the activity extending over one or more weeks,
and even though these may be five-day work weeks, the total time estimate, as
drawn on the bar charts usually includes weekends. Hence, it is recommended
that the user input the *7DAY card in the input deck when running NETGEN so
that the resulting dates match up with those on the original bar chart. It is
also recommended that the user inout both the start and end dates. since these
are generally shown on the bar charts. NETGEN comzes the duration
these. However, when the user leaves out the start or end dates, NETGEN
post a WOOOOOOW in the date field as a warning. This will cause problems
the resulting files (with these entries) are sent to PPARS Batch, and
cause a fatal error in the EZPERT processing.

from
will
when
will

OUTPUT DESCRIPTION

There are several portions to the output listing printed for the user after
executing the NETGEN program. The first section, fig. 3, on the printout is
a listing of the original input cards as set up by the user, and any
diagnostics. There is also some information concerning the number and types
of constraints detected by the NETGEN program and information concerning those
activities with negative duration (fig. 4); this will indicate that the
start/end dates were reversed by the user, or the duration for the interface
constraint was negative because of the inputted dates. All negative durations
are set to zero. There is also information concerning activities that could ----
not be connected with interface activities. Lastly, NETGEN produces a
complete listing of all the activities and interface constraints sorted by the
predecessor (fig. 5). This report is nearly identical to REPORT 1 from PPARS
Batch program; i.e., a complete listing of the network. The work tasks are
given in the leftmost columns, except on interface constraints. On these

14

A 3
Al
Al
A 1
Al
Al
Al
A 1
Al
Al
Al
Al
B
B
B
B
8
0
B
B
B
6
B
6

l ** NASA - LRC PPARS +*I
NETUORK GENERATION PROGRAM

- NETGEN -
l * INPUT CONTROL CARDS l *

l TITLE(NETGEN SAflPLEI
+7DAY
+DATE(06/011B01
l REPORTl,Zr3,4#15
*NETUORK

NASA - LRC NETWORK GENERATION PROGRAH
** INPUT TASK CARDS *I

10.5

1.5

060180

090280

060180

103180

1.0 0626~0 063080

1.6

1.1

081580

070180

111780

083180
1.2 0715do oei580
1.3 G715BO 093080
1.4 ObOlBO 103180

PROJECT

FAB CHASSIS

START

DIG.

DIGITAL CONTROLLER DES RQt4TS

CONTRL.

DC

DC
PC6

DESIGN

FUNCT.

DIG.

TESTS

CONTROL.

DIG. CONTRL

DC

DC

TEST PROCEDURC-S DIG. CONTRLa DC
ORDER MATERIAL DIG. CONTRL. DC
FAB PRINTED CIRCUIT BRDS DIG.CNi DC

1.7 100180
1.8 121680
1.9 0201.91
2.0 021581

10.5ES
l.OES
l.lSS
1.2EE
1.355
l.lSS
1.455
1.5ES
1.655
1.7FA
i;BES
1.9FA

121580
011581
021581
021581
1.0
111
1.2ss
l.lES
lr4EE
1.5
1.6EE
1.8
1.7EE
1*8
1.9
2.0

PCB CONFORNAL COAT DIG. CONTRL. DC
ASSEHBLE DIG. CONTRL DC
TEST DIG. COtiTRL DC
DIG. CONTRL AVAILABLE DC

1.355 la4EE 1*4
la6
l*C

1.6

1*7

FIGURE- 3

l * IriPUT OAT4 SUyf'aARY I*

CODE PRED,

1 115
1 125

: 135 145
1 165

THE NUPBER OF CRIGIYAL ACTIVITIES :
TriE IruMBER 3F END-TJ-END CDKSTRAINTS
THE NUflBER OF START-TD-START CONSTRAINTS:
THE NUMBER OF END-TO-START CONSTRAINTS :
THE NUHBER OF START-TO-5ND CONSTRAINTS :
THE NUtleER OF F/A CONSTRAINTS I

31

:
5
0
2

NASA - LRC NETWORK GENERATION PROGRAR
** INTERFAC2 AtiALYSIS **

FOLLOWING ACTIVITIES - F/A TYPE

PRED. succ. START END

170 175 100180 121580
190 195 020181 021581

NASA - LRC NETWORK GENERATION PROGRAM
++ INTERFACE ANALYSIS ++

END TO END ACTIVITIES - E/E TYPE
----------I----------------------------

SUCC. START END DuR. DESCRIPTION

145 083180 103183 61 EIE - 115 TO 145
115 081580 083180 E/E - 125 TO 115
145 093080 103180 :: E/E - TO 145
lb5 103180 111780

-135
17 E/E - 145 TO 165

175 111780 121580 28 E/E - 165 TO 175

FIGURE 4

-1

AC MS

1

:

:
1

:
1

:
1
1
1
1
1
1
1
1
1
1

:
1
1

:
3
1

ORIGINAL
WBSX

l*O

1.10
0
0
0

x
1.2

0
0

1.3
0
0

la4
0
0

‘1.5
a

1*6
0
0

1.7
1.8

0
1.9
2.0

10.5
0

PRED. SUCC.

100
105
110
110
110
110
110
115
120
125
125
130
130
135
140
140
145
150
155
160
160
lb5
170
175
185
190
195

1050
1055 100

105
110
115
120
130
140
150
145
125
115
160
135
140
145
145
160
lb5
155
175
lb5
170
175
175
185
190
195
205

1055

NASA - LRC NETYORK GENERATION PROGRAH

FINAL NETWORK

START END
DATE DATE

062880 063080
Db3080 070180
07C180 083180
070180 071580
070180 071580
070180 06OlrJO
070180 090280
083180 103180
071580 081580
081580 083180 2i3
081580 081580 0.0
071580 093090
071580 080180

060180 062880

093080 103130
080180 103180
080180 081580
103180 111780
090280 103180
103180 121680
081580 111780
081580 100180
111780 121580
100180 121580
12lb80 011581
011581 020181
020181 021581
021581 021581
06Cl80 060180

DUR. RES. ACTIVITY DESCRIPTION ORGAN.

013
0.1
8.7
2.0
2.0
4*4
9.0
8.7
4.4

11.0
2.4

1El
2.0
294
8.4
6.6

13.4
6.7
4.0

lOI
4al
2.4
2.0
0.0
o*o
3.9

DIGITAL CONTROLLER DES RQ~TS
EIS - 105 TO 110

DESIGN DIG. CONTROL,
s/s - 110 TO 120
SIS - 110 TO 130
s/s - 110 TO 140
SIS - 110 TO 150
E/E - 115 TO 145

TEST PROCEDURES DIG. CONTRL,
EIE : 125 TO 115
EIS - 125 TO 160

DRDER HATEKIAL DIG. CUNTR'L.
s/s - 130 T3 140
E/E - 135 io 145

FAB PRINTED CIkCUIt BRDS DIG.CNl
s/s - 140 TO 160
E/E - 145 TO 165

FIB CHASSIS DIG. CONTRLm
EIS - 155 TO 175

PCB FUNCT. TESTS DIG. CONTRL
SIS - lb0 TO 170

_ E/E - 165 TO 175
PC8 CONFORHAL COAT DIGa CONTRL.
ASSEHBLE DIG. CONTRL

E/S - 185 TO 190
TEST DIG. CONTRL
DIG. CONiRL AVAILABLE

PROJECT START
EIS - 1055 TO 100

DC

DC

DC

DC

DC

DC

DC

DC
DC

DC
DC

FIGURE 5

interface constraints, the work task value is set to zero, the description of
their type is given in the activities description field and reads "E/S :
XXXXXXX to XXXXXXX11, etc.

The data is keypunched according to the data field layout shown in Figures 1
and 2. A sample of the PPARS control cards that must precede the "A" and tlB"

DECK SETUP

data cards are:

*TITLE(.)
*DATE(../../..)
*REPORT
*NETWORK

A
A
A
(A and B data cards)
B
B

The single control card that follows this data is the ,*ENDBATCH card.

Having keypunched the cards, process them through the NETGEN program using
the Cyber Control Language (CCL) procedure, RUNNET. The deck setup would be
as follows:

NETJOB,T100,CM120000.
USER,nnnnnnn.
CHARGE,xyxyxyxy
COPYBR,INPUT,TAPE79.
SAVE,TAPE79=TASKDAT.
REWIND,TAPE79.
BEGIN,,RUNNET.
SAVE,TAPE29=NEWNETW.
EXIT.
7/B/9/
*TITLE(.......
*7DAY
'DATEC.......

BINXX J. USER

18

(PPARS Batch Control Cards)

*NETWORK
A
A

: (NETGEN Data Cards)

B
B

:
:

*ENDBATCH
7/8/9
6171819

The idea here is that the RUNNET procedure file is looking for its input on
a local file called TAPE79. The contents of procedure RUNNET would be as
follows:

.PROC,RUNNET.
COMMENT. *** PROC. FILE RUNNET ***
COMMENT.
REWIND.TAPE.7'9.
GET,LGO=NETBIN/UN=66325ON.
MAP,OFF.
GET,NETSGDR. (Segmentation directives as shown

in Appendix)
SEGLOAD(B=NETABS,I=NETSGDR).
LDSET(PRESET=ZERO)
LOAD,LGO.
NOGO.
RETURN,LGO.
NETABS,TAPE79,0UTPUT.
RETURN.NETABS.
RETURN,TAPE13,TAPE15,TAPE9,TAPElg.
REWIND,TAPE8,TAPE17.
REVERT. *** END RUNNET ***

NETGEN produces a PERT-type network on the file TAPE8, that can be saved for
later use in the PPARS Batch program. The file TAPE17 can also be saved or

19

used as input to the EZPERT program to produce the EZPERT PRENET(LOGIC) mode
diagrams. Also note that the user can input any of the valid EZPERT control
cards if he desires, although NETGEN produces the necessary instructions
(along with the data) on the file TAPE17.

20

I I

Section 4
PROGRAM DESCRIPTION

NETGEN is written in FORTRAN and contains one main program, one block data
subprogram and 20 subroutines. NETGEN can be executed in a normal manner or
as a segmented program via the CDC SEGRES Loader program. NETGEN tree
structure is shown in Figure 6. The segmentation directives for the program
are given in the Appendix. All files used in NETGEN are declared in the main
program, while all common blocks are declared in or below subroutine DRIVER.
This technique of programming allows the I/O buffers to be loaded above the
labeled common blocks. There is no unlabeled,

PROGRAM MODULES

NTWGEN

Main program; used to declare all files used
calls subroutine DRIVER.

DRIVER

or llblank*l , COMMON in NETGEN.

in NETGEN. Program NTWGEN only

Subroutine; contains nearly all of the common blocks used. DRIVER controls
the calling of the two main branches (see Figure 1) in the program: i.e.,
DRIVER calls READCD first for reading/editing and preparing the data base.
Then DRIVER calls TIEUP for the subsequent network path construction, data
sorting and output generation.

BKDATA

Subprogram; initializes the variables and arrays used in NETGEN.

MOVBIT

Subroutine; is called by subroutines RDACT, PRECON, SUCONV, PATHS, and UNDATE
to pack or unpack data on the 60 bit words.

21

NETGEN TREE W4GRJiM

I I I

-a SUCONV El PRECON t5 UPDATE

I
z

PUTOUT
.

-7

cl DATCON

REDATE

FIGURE6

READCD

Subroutine; reads the input file down to, and including, the *NETWORK card.
READCD controls the processing of the first main branch and calls INCDST and
RDACT.

KONVERT

Subroutine; is called by INCDST, PRECON, and SUCONV to convert a task number
from character data into a 7-digit integer.

INCDST

Subroutine; reads and rearranges the activity cards so that each "A" card is
followed by its associated rcB" card(s). The "A" and llBrl cards are initially
read by INCDST and written to the files TAPE13 and TAPE15, respectively.
.These are then merged and written to the file TAPE17.

RDACT

Subroutine; reads TAPE17 as created by INCDST and creates the data base on the
file TAPEg. RDACT calls routines PRECON,SUCONV, and DUMYRD to handle the "A",
"B" t and any unrecognized cards, respectively. The information processed from
any tlA'l card and its associated tlBtl card(s) is temporarily stored in the
array, INFOTBL. RDACT dumps this information to TAPE9 when a new "A" card is
read. RDACT continues to read from TAPE17 until an *ENDBATCH or an end of
file (EOF) is detected.

DUMYRD

Subroutine; called by RDACT to print out any invalid or unrecognized cards.
DUMYRD then continues reading and writing the cards on TAPE17 until it
encounters an "AIt card, *ENDBATCH or end of file.

PRECON

Subroutine; called by RDACT to analyze the "A1' cards. PRECON uses routine
KONVERT to create an integer value (predecessor) from the task number, and
routine DATECK to edit/convert the activity date information. For each valid
"A" card, PRECON increments the counter, IPRCNT, and stores the *tA11 card data

23

in the first row of the array INFOTBL; columns 1 to 8 of INFOTBL contain the
original card data, as well as the new predecessor/successor and duration.
PRECON also packs the activity's date information as returned from routine
DATECK, into the array DATTBL, at location DATTBL (IPRCNT), via subroutine
MOVBIT.

DATECK

Subroutine; called by PRECON to edit/verify/convert the input dates on the "A"
card. If only two of the three date items are given,'DATECK will compute the
third. Dates are given as integer values from the base year, January 1, 1970
and the duration is computed on a s-day work week, unless the user inputs the
l 7DAY card.

SUCONV

Subroutine: called by RDACT to edit/convert the ltBrl card data. Since there
can be a max of four (4) tasks on the ltBrt card, SUCONV moves all the data in
the array INFOTBL down one row, stores the new task in column 9 of this next
row, and increments the counter IPRCNT. Then SUCONV brings the information in
the array DATTBL down by one row, increments the specific constraint type
counter, KEXnn and packs the value IPRCNT into the array CONSTBL at location
KEXnn. SUCOm skips over the blank fields on the rtBll, but if a task is given
witGut a constraint type, it is assigned the F/A type.

TIEUP

Subroutine; called by DRIVER to control the processing in the second branch of
the program. TIEUP calls subroutines PATHS, SORTER and PUTOUT for the network
construction, network sorting and data output, respectively.

PATHS

Subroutine; called by TIEUP to construct the logic network. PATHS reads the
file TAPE9 into the array, EVENTBL. The address for each activity according
to constraint type is retrieved from the CONSTBL array by PATHS via subroutine
MOVBIT. The key values in the EVENTBL array are a task's predecessor,
successor, and the predecessor of the constrained task. PATHS calls
subroutine SEARCH to go find this constrained task elsewhere in EVENTBL, so
that the two tasks can be joined. The F/A tasks (if any) are constructed
first, and for each activity affected, PATHS stores a flag value of -100 in

24

EVENTBL. At the conclusion of the F/A analysis, PATHS calls subroutine FAENT
to detect all start/end events in the F/A group, as well as any other
ltstraysll, i.e., those activities not joined to any other activities and flags
them with a -100. PATHS then constructs the E/E, S/S, E/S, and S/E interface
activities. As these are formed, they are written out to file TAPE19. When
all the interface analysis is done, PATHS merges the flagged data with the
information on file TAPE19 and rewrites the data base to file TAPE9.

SEARCH ___-

Subroutine; called by PATHS to scan the EVENTBL array and find the activity
whose predecessor was given (as the constrained activity) elsewhere in EVENTBL
by PATHS. SEARCH returns the location of the match to PATHS.

FAENT

Subroutine: called by PATHS to scan only the F/A activities and flag the end
events. FAENT then searches for the ltstray" activities - those not joined to
any others - and flags them.

SORTER

Subroutine; called by TIEUP to sort the data base. The algorithm used in a
Bubble Sort and the major sort key is predecessor, with the minor key,
successor.

STEND

Subroutine; called by SORTER to find all start/end events in the sorted
networks. Start events are given a code 3 (if they have an original code 1)
and end events are given a temporary code of 9. so that the end date will be
included when the activity is written to TAPE8 for PPARS Batch. This code is
reset to 1 by routine PUTOUT before writing the record. This technique forces

PUTOUT --

all end events to be scheduled for PPARS Batch.

Subroutine; called by TIEUP to write the files going to EZPERT and PPARS
Batch. PUTOUT also writes the fina 1 output for NETGEN showing the or iginal

25

task, the new predecessors and successors, etc. PUTOUT calls routines UNDATE,
DATCON and REDATE for date conversion during the writing of the output files.

UNDATE

Subroutine; called by PUTOUT to unpack the activity date information from the
DATTBL array. UNDATE calls routine MOVBIT to perform the unpacking, but then
tests the results for negative duration.

DATCON

Subroutine; called by PUTOUT to convert the activity date information into a
format (DDMMYY) acceptable to EZPERT.

REDATE

Subroutine; called by PUTOUT to convert the activity's duration into a
two-part integer consisting of weeks and days.

FILES IN NETGEN

There are eight files declared in the PROGRAM statement of NTWGEN. These are:

TAPE5 TAPE13
TAPE6 TAPE15
TAPE8 TAPE17
TAPE9 TAPE19

A brief description of these files is as follows:

TAPE5

TAPE5 is equated to INPUT on the PROGRAM statement.

TAPE6

TAPE6 is equated to OUTPUT on the PROGRAM statement.

26

TAPE8

TAPE8 is created by routine READCD and contains the control cards input by the
user. Subroutine PUTOUT later writes the network activities created by NETGEN
out to TAPEB, following the *NETWORK card. PUTOUT also writes the *ENDBATCH
card out to TAPE8 as the last record.

TAPE9

TAPE9 is initially written by routine RDACT, and contains the data from the
tlA1l and IlB cards. TAPE9 is the main data base for NETGEN and contains 15
fields, for a total length of 101 characters. The layout for TAPE9 is:

1) 2) 3) 4) 5) 6) 7) 8) 9) I 10) 11) 12)

IX, Al, A2, AlO, A4, 17, 17, A6, A6, 14, 4A10, A6, 17

1) Activity Code
2) Master Schedule
3) First 10 characters of the WBS value
4) Last 4 characters of the WBS value
5.6) Predecessor and Successor
7.8) Start and end date
9) Duration
10.11) Description and Organization
12) Integer trO'l for "At1 cards or the predecessor value of the -

constrained task from the "B" cards.

Thus, for every valid "At1 card, RDACT writes one record out to TAPE9 with a 0
for element 12. Then, as RDACT reads (and accepts) the "Bll cards associated
with that particular "A" card, the same information is repeated. but with the
predecessor stored in item 12. This process continues until the next "A" card
is encountered. TAPE9 is subsequently read by routine PATHS to form the
interface activities. Routine SORTER also reads TAPEq, but sorts the data and
then writes it back to TAPElq.

TAPE13

TAPE13 is created by routine INCDST and contains all the "A" cards.

27

TAPE15

TAPE15 is created by routine INCDST and contains all the llBtr cards. TAPE15
and TAPE13 are merged in INCDST to form TAPE17

TAPE17

TAPE17 is initially created by INCDST and contains the intermixed "A" and rrB1l
cards. It is read by routine RDACT during the creation of TAPE9. Routine
PUTOUT completely overwrites TAPE17 to contain the data for the EZPERT
program.

TAPE19

Scratch file, used throughout the program for temporary storage.

COMMON BLOCKS and VARIABLES

All common blocks used in NETGEN are FORTRAN labeled and declared at, or
below, subroutine DRIVER. The common blocks and their contents are as
follows:

ACTREC

Declared in subroutine DRIVER and contains three (3) integer arrays -
CARD(%O), CRDCOD(21, and CTYPE(5). The CARD array is used to hold data coming
in from or going out to the various files throughout the program. The CRDCOD
holds the two (2) card codes, "A" or "Br' as variables, and the CTYPE array
holds the five (5) valid constraint types - FA, ES, EE, SS, and SE as
variables. CRDCOD and CTYPE are defined in subprogram BKDATA.

CONTROL

Declared in subroutine DRIVER and contains the integer array PERTCD along with
the logical variables 15DAY and 17DAY. Array PERTCD is defined in subprogram
BKDATA to contain the first five (5) characters of the following PPARS Batch
control cards: *TITLE, *5DAY, *7DAY, *NETWORK, and *ENDBATCH. The values for
15DAY and 17DAY are also initialized in BKDATA to .TRUE. and .FALSE.
respectively. These may be reset in routine READCD when a *7DAY card is
detected.

28

COUNTS

Declared in subroutine DRIVER. COUNTS contains the various counters/ pointers
used throughout NETGEN. These variables are as follows:

IPRCNT - Counter, incremented by PRECON for each "A" card accepted, and by
SUCONV for each constraint given on a lrBlr card. IPRCNT equals the
number of records written to file TAPE9 by RDACT.

INCRE - Total number of activity cards read.

KEXEE - Total number of E/E constraints.

KEXSS - Total number of S/S constraints.

KEXES - Total number of E/S constraints.

KEXSE - Total number of S/E constraints.

KEXFA - Total number of F/A constraints.

LOCDUM - Scratch variable.

ITOTAL - Total number of activities after the network
construction. Incremented by PATHS.

LABEL ---

Declared in subroutine DRIVER and contains the integer arrays DATTBL, CONSTBL,
and DESTBL (scratch array). The date information for an activity is initially
determined by routine DATECK, but is packed (start. end, duration) into one
word by routine PRECON into the array DATTBL. The bit pattern of any word in
the array DATTBL is as follows:

bits 59 42 38 21 17 0
lxxx 1 lxxx[

Contents Bits

I> start date 59-42
2) end date 38-21
3) duration 17-O

Bits 18-20 and 39-41 are unused. For a given activity these values are stored
at location DATTBL (IPRCNT).

29

The constraint information is kept as a series of pointers to the information
written to TAPE9 by RDACT; i.e., as an rlA1l card is read or as one constraint
on a "B1' card is read, its location out on TAPE9 will be the value, IPRCNT.
When routine SUCONV analyzes the constraint on a "B" card, IPRCNT is
incremented and packed into KEXnn word of the CONSTBL array, in the portion
set aside for that particular constraint type. The layout of the bit pattern
is any word of the array CONSTBL is:

bits 59 48 47 36 35 24 23 12 11 0

1 I 2 3 4 5

Contents Bits

1) IPRCNT for F/A 48-59
2) IPRCNT for E/E 36-47
3) IPRCNT for S/S 24-35
4) IPRCNT for E/S 12-23
5) IPRCNT for S/E O-l 1

MISC

Declared in DRIVER and used throughout the program. MISC contains the
following integer variables:

BLANK - Initialized in BKDATA to 1H.

IERR - Error return, used in routine DRIVER to check if the input is
valid.

ZERO - Initialized in BKDATA to IHO.

MONTHS

Declared in DRIVER and contains date information.

MONTBL - Array,initialized in BKDATA to contain the total number of days in
each month.

DAYTOT - Integer array, initialized in BKDATA to hold the cumulative days in
the year by the end of each month.

30

ISTART - Array, used by DATECK in converting the activity start date into an
integer.

IEND - See ISTART

BYR - Base year, initialized by BKDATA to 70 (1970).

ACTIME - Integer, used to hold the activity duration.

NEW

Declared in routine PATHS to hold information about the two activities being
joined in the network construction.

NEWACT - Array,holds the predecessor, successor, dates, etc., on the new
interface activity. The contents of NEWACT are written to TAPE19
by PATH.

NPRED - Predecessor of the constrained task.

NSUCC - Successor of the constrained task.

MATLOC - Location in EVENTBL of the constrained task; MATLOC is computed in
routine SEARCH.

NOFIND - Logical. set to .TRUE.
SEARCH.

ENDFLG - Scratch value.

if the constrained task is not found by

IDES1 - IDES4 - Initialized in PATHS to hold the activity descriptions
assigned to the constraints.

ITOTFA - Total F/A activities after the network construction.

PETE

Declared in routine RDACT and contains the information being processed on any
rtA'l card and its associated rlBtl cards. The contents of PETE are:

INFOTBL - Array; the first row (~01s. l-8) is filled with the tlA1l card data
via routine PRECON. Then, as the tasks are analyzed on the "B"

31

cards, the information is copied down into the next successive row
for each task on the (lBI1 card by routine SUCONV. The task number
as determined by SUCONV is stored in column 9 of the associated
row.

INC - Counter; set and incremented by RDACT to determine how, may rows
were filled by routine SUCONV.

Declared in DRIVER and used in INCDST. INCD contains two
variables, KTOTA and KTOTB that keep a count of the number of rlA1l
and tlBtl cards, respectively, read by INCDST.

OLDBLK

Declared in PATHS and used to hold information for the network construction.
OLDBLK contains the integer array EVENTBL, which is filled by routine PATHS.

OLDTWO

Declared in SORTER and contains the activities to be sorted. Routine SORTER
reads the data from file TAPE9 into the integer array IACTBL and sorts the
network; the major key is predecessor and minor key, successor. The algorithm
used is a Bubble Sort.

32

Appendix

SEGMENTATION LOADER DIRECTIVES FOR NETGEN

33

*
*

ROOT

*
*
*
TRl
READCD

*
INCDST

*
*

RDACT
RDACT
RDACT

*
*
*
TR2
TIEUP

*
*

PATHS
PATHS

*
SORTER
SORTER

*
PUTOUT

*
*

TREE
INCLUDE
GLOBAL
GLOBAL

TREE
INCLUDE

INCLUDE

INCLUDE
INCLUDE
GLOBAL

TREE
INCLUDE

INCLUDE
GLOBAL

INCLUDE
GLOBAL

INCLUDE

NTWGEN-(TRl,TR2)
NTWGEN,DRIVER,BKDATA,MOVBIT
LABEL,ACTREC,MONTHS
COUNTS,MISC,CONTRL

READCD-(INCDST.RDACT)
READCD,KONVERT

INCDST

RDACT,PRECON,DATECK
SUCONV,DUMYRD
PETE

TIEUP-(PATHS,SORTER,PUTOUT)
TIEUP

PATHS,UNDATE
NEW,OLDBLK

SORTER,STEND
OLDTWO

PUTOUT,DATCON,REDATE

END

34

1. Report No.

NASA CR-3364
4. Title and Subtitle

LOGIC NETWORKS FROM TASK

7. Author(s)

Henry E. Herbert

8. Performing Organization Report No.

10. Work Unit No.
9. Performing Organization Name and Address

Computer Sciences Corporation
3217 N. Armistead Avenue
Hampton, Virginia 23666

-- .---.- - -~ 4 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Contractor Report
14. Sponsoring Agency Code

I 5. Supplementary Notes

Contract Monitor: John Hogge, NASA Langley Research Center
Technical Monitor: D. A. Wood, NASA Langley Research Center
Topical Report

16. Abstract

This paper presents the Network Generation Program (NETGEN) that
creates logic networks from task chart data. NETGEN is written in
CDC FORTRAN IV (Extended) and runs in a batch mode on the CDC 6000
and CYBER 170 Series Computers. Data is input via a two-card format
and contains information regarding the specific tasks in a project.
From this data, NETGEN constructs a logic network of related activi-
ties with each activity having unique predecessor and successor
nodes, activity duration, descriptions, etc. NETGEN then prepares
this data on two files that can be used in the Project Planning
Analysis and Reporting System (PPARS) Batch Network Scheduling pro-
gram and the EZPERT graphics program.

7. Key Words (Suggested by Author(s))

Critical Path Method
PERT Networks
Project Scheduling

18. Distribution Statement

UNCLASSIFIED - UNLIMITED

9. Security Classif. (of this report)

Unclassified

I I--
20. Security Classif. (of this page)

Unclassified

Subject Category 61

21. No. of Pages 22. Price

36 A03

For sale by the Natronal Technical InformatIon Service, Sprrnefreld. Virglnla 22161
NASA-Langley, 1980

